were obtained in 18.5 and 22.1% yields based on the consumed H₃PO₅, respectively.

n-Butyl alcohol was trapped by using acetic acid, the yields of n-butyl acetate (8), n-butyl alcohol, and n-butyl butyrate (7) being estimated by GLC (Table III).

Reaction of THF and CH_3CO_3H . THF (100 mL) was treated with CH₃CO₃H (0.18 M) at 25 °C in the presence of 0.15 M H₃PO₄ under conditions analogous to those above or in the absence of H₃PO₄, but no appreciable amount of peracetic acid was decomposed after 30 h, and no product was detected by GLC.

Registry No. 1, 109-99-9; 2, 96-48-0; 4, 5371-52-8; 5, 25714-71-0; 6, 142-96-1; 7, 109-21-7; 8, 123-86-4; n-BuOH, 71-36-3; H₃PO₅, 13598-52-2.

¹H and ¹³C NMR Spectra of Substituted Borylbenzenes

Brian G. Ramsey^{*1a} and Kenneth Longmuir^{1b}

Department of Chemistry, The University of Oregon, Eugene, Oregon

Received July 26, 1979

In an earlier paper,² an analysis, based upon modified CNDO/2 calculations, was presented of BX₂ substituent effects on benzene π orbital energies and atomic charge densities in the series PhBX'₂ (X' is F, Cl, OH, and Me). Agreement was found between the results of these calculations and photoelectron ionization energies, as well as UV transition energies of PhBX₂ (X is F, Cl, OH, OMe, and $X_2 = 9$ -bicyclononane). No correlation was found between changes in calculated (π or total) charge densities at carbon and reported^{2,3} ¹H NMR (60 MHz) chemical shifts of PhBX₂ (X is Cl, F, OMe), and it was suggested² that the ortho and meta proton assignments^{3a} in the NMR spectra of $PhBF_2$ and $PhBCl_2$ should be reversed. We report a redetermination of the ¹H NMR spectra of the series PhBX₂ at 100 MHz which confirms our earlier suggestion and corrects the previous misassignments in the ¹H NMR spectra of PhBF₂ and PhBCl₂. The ¹³C aromatic carbon NMR chemical shifts relative

to benzene were also determined for each member of the series PhBX₂ by proton-decoupled 25.2-MHz FT NMR spectroscopy. In this series, only the ¹³C NMR spectra of PhB(OH)₂ and PhB(OMe)₂ have been previously reported by Niedenzu and co-workers.⁴ The ortho and meta carbon assignments in the ¹³C NMR spectra of PhBCl₂, PhBF₂, and other phenylboranes by Niedenzu are, however, in conflict with later assignments by Brown and co-workers⁵ for similar molecules in a series of phenylalkoxy- and aminoboranes. The assignments of Brown were made by off-resonance-decoupled, selectively decoupled, and undecoupled ¹³C NMR spectroscopy and must be regarded as correct for the molecules studied. In agreement with the results of Brown and co-workers, our results support

Table I. ¹H and ¹³C NMR Chemical Shifts (8) of PhBX, Relative to Benzene

	δ ortho		δ meta		δpara	
BX	'Η	¹³ C	¹ H	¹³ C	¹ H	¹³ C
$ BCl_2^a BF_2^a BF_2^g B(OH)_2^c B(OMe)_2^{a,e} BPh_2^f $	$\begin{array}{c} 0.75 \\ 0.49^{b} \\ 0.60 \\ 0.40 \\ 0.22 \end{array}$	8.57 8.02 6.33 5.91 5.08 9.9	$\begin{array}{c} 0.07 \\ 0.08 \\ (0.1)^d \\ (0.0)^d \\ (-0.1)^d \end{array}$	$\begin{array}{r} -0.13\\ 0.05\\ -0.27\\ -0.29\\ -0.64\\ -1.2\end{array}$	$\begin{array}{c} 0.23 \\ 0.22 \\ (0.1)^d \\ (0.0)^d \\ (-0.1)^d \end{array}$	6.76 5.80 4.46 2.38 1.31 2.7

^a Solvent CDCl₃. ^b J [¹³C,F (ortho)] = 4.70 Hz. ^c Solvent CD₃OD. ^d Multiplet center. ^e OCH₃ δ^{CH} C 25.48, δ^{CH} H 3.73 (cyclohexane internal reference). ^f Reference 7. ^g R is 9-bicyclononane.

Figure 1. ¹H NMR spectrum at 100 MHz of (a) PhB(OH)₂ in CD_3OD and (b) PhBF₂ in $CDCl_3$ in parts per million downfield from Me₄Si.

assignment of the ortho carbon ¹³C NMR chemical shifts as downfield with respect to those of meta or para carbons for all members of the series PhBX₂.

Proton and ¹³C NMR chemical shifts downfield relative to benzene for the compounds investigated appear in Table I. In the ¹H spectra, the aromatic protons divide into two multiplets of two (low field) and three (high field) protons, each separated by 0.3 to 0.5 ppm. Figure 1 provides ¹H NMR spectra of $PhBF_2$ and $PhB(OH)_2$ as representative. The low-field multiplet of two protons, which is broadened by coupling to boron, is assigned to the ortho protons in each case. Ortho shifts are reported as the average of the two most intense inner lines in the multiplet, a procedure supported by computer analysis of the spectra of PhBCl₂ and PhBF₂ which were very similar in appearance

The observed ¹H NMR spectra of PhBCl₂ and PhBF₂ can be adequately computer similated to extract meta and para ¹H chemical shifts (Table I) by using the following coupling constants (Hz): $J_{2,3} = J_{5,6} = 7.0$, $J_{3,4} = J_{4,5} = 7.5$, $J_{2,4} = J_{4,6} = 1.3$, $J_{3,5} = 1.4$, $J_{3,6} = J_{2,5} = 0.6$. Remaining ¹H NMR spectra of PhBX₂ were not subjected to computer analysis because of poor resolution of structure, and combined meta-para ¹H NMR shifts are therefore reported as the center of the high-field multiplet.

Proton-decoupled ¹³C NMR shifts were assigned on the basis of intensity and an assumed larger downfield shift for ortho than meta carbon, as found for ortho and meta H, and in agreement with Brown and co-workers's assignments in similar molecules.⁵

^{(1) (}a) Department of Chemistry, San Francisco State University, San Francisco, CA 94132. (b) Department of Physiology, California College of Medicine, University of California, Irvine, CA 92717.

⁽²⁾ B. G. Ramsey and S. J. O'Neill, J. Organomet. Chem., 141, 257 (1977)

^{(3) (}a) F. C. Nahm, E. F. Rothergy, and K. Neidenzu, J. Organomet. Chem., 35, 9 (1972); (b) M. Wieber and W. Kunzel, Z. Anorg. Allg. Chem., 403, 107 (1974).

^{(4) (}a) K. Neidenzu, B. Gragg, and W. J. Layton, J. Organomet. Chem., 132, 29 (1977); (b) K. Neidenzu, K. Y. Muller, W. Layton, and L. Komorowski, Z. Anorg. Allg. Chem., 439, 112 (1978).
(5) C. Brown, R. Cragg, T. Miller, D. Smith, and A. Steltner, J. Or-ganomet. Chem., 149, C-34 (1978).

Notes

Figure 2. ¹³C NMR chemical shifts of PhBX₂ (X is F, Cl, OH, and 9-BBN), referenced to benzene, as a function of change in total electron charge density, ΔQ , relative to benzene: \circ ortho; \bullet para.

As may be seen from the combined NMR data in Table I, there is now the expected trend in correlation between para ¹³C and ¹H NMR shifts within the series PhBX₂ and an absence of such correlations at the meta and ortho positions.

In the series PhBX'₂, previously calculated² changes in benzene carbon electron density on BX'₂ substitution ranged from -0.016 to -0.065, para; 0.011 to 0.020, meta; and -0.017 to -0.055, ortho (electrons). Figure 2 demonstrates that very reasonable linear correlations are found to exist between both para and ortho ¹³C chemical shifts relative to benzene and changes in total electron density, ΔQ_T , at carbon on BX₂ substitution. The least-squares regression lines are given by (1) and (2) for these correlations. Similar but somewhat less satisfactory correlations

 $\delta^{\text{PhH 13}}$ C (para) = -136 ΔQ_{T} + 0.86 ppm (SD 0.22 ppm) (1)

 $\delta^{\text{PhH 13}}$ C (ortho) = -75 ΔQ_{T} + 4.45 ppm (SD 0.30 ppm) (2)

between ortho and para δ ¹³C and changes in π charge density are also obtained.

There is no correlation found between ΔQ and δ ¹³C NMR of PhBX₂ for meta carbons. However, the modified CNDO/2 calculations do predict an *increase* in electron density at meta carbons for all PhBX₂, in qualitative agreement with the observed near zero or upfield ¹³C shifts.

For unknown reasons, both ortho and meta carbon ¹³C shifts are less sensitive to charge-density changes than para carbon. The large nonzero intercept (ΔQ_T is 0.0) of (2) suggests a substantial, but relatively constant, deshielding anisotropy associated with the BX₂ group or perhaps the B-C/sp² bond. The ortho δ ¹³C shifts are also unusual in that they are further downfield than the para, unlike analogous substituents such as NO₂ or COR.⁶

Table II. σ Substituent Constants for BX₂

BX ₂	BCl ₂	BF ₂	BR_2^a	B(OH) ₂	B(OMe) ₂
σ° R ^b	0.28	0.24	0.22	$(0.13)^d$	0.12
σ1 ^{5°}	0.31	0.26	0.03	$(-0.05)^d$	-0.27
$\sigma^{+}p^{c}$	0.86	0.76	0.61	$(0.38)^d$	0.26

^a R is 9-bicyclo[3.3.1]nonane (9-BBN). ^b Error limits are estimated as $\sigma_R^0 \pm 0.02$; $\sigma_I \pm 0.05$. These are based upon uncertainty in the last place figure reported for values of ρ_I and ρ_R (ref 7) and upon an experimental error in ¹³C chemical shifts of 0.01 ppm. ^c Error limits on σ_P^+ (Swain-Lupton) are estimated as ± 0.01 . ^d These σ values were determined from ¹³C chemical shifts measured in CH₃OD and therefore assume a negligible solvent effect in a change from CH₃OD to carbon tetrachloride.

From relationships provided by Hehre, Taft, and Topsom,⁷ and by Nelson, Levy, and Cargioli,⁸ the ¹³C NMR chemical shifts may be used to calculate values of the Hammett-type substituent constants σ^0_R , σ_I and σ^+ found in Table II.⁹ The NMR results and derived substituent constants are now consistent with the previously published² interpretations of BX₂ substituent interaction mechanisms in the PhBX₂ system, which were based on photoelectron (PE) and UV spectra and modified CNDO/2 calculations. It must however be kept in mind that substituent effects on UV and PE spectra may largely reflect changes in orbital energy, whereas *local charge* density at carbon appears to play a major and often dominant role in determining the change in ¹H and ¹³C NMR chemical shifts of monosubstituted benzenes relative to benzene.¹⁰

All BX₂ substituents donate electron density, ΔQ_{σ} , to the benzene ring through the σ framework in the modified CNDO/2 calculations (BF₂ -0.14; BCl₂ -0.08; B(OH)₂ -0.17; BR₂ -0.15, electrons) and withdraw π -electron density, δQ_{π} (BF₂ 0.07; BCl₂ 0.11; B(OH)₂ 0.05; BR₂ 0.09 electron).²

At the para position, and to a lesser extent at the meta position, changes in benzene ¹³C and ¹H NMR chemical shifts on BX_2 substitution may now be rationalized in terms of changes in carbon charge density. It is not necessary or even likely that the same order of substituent effects will be obtained in a series comparing PE (or UV) spectra and NMR chemical shifts.

Para ¹H and ¹³C NMR chemical shifts of PhBCl₂ are greater than those of PhBF₂, primarily because of the large π -electron-withdrawing effect of BCl₂, added to a strong field effect. Because $2p-\pi$ back-bonding by fluorine to boron reduces the ability of BF₂ to otherwise withdraw π electrons from the benzene ring, the strongest interaction mode of the BF₂ group is the field effect. This BF₂ field effect operates more effectively in determining orbital energy than meta or para carbon electron density, with the

⁽⁶⁾ J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, 1972, p 200.

⁽⁷⁾ W. J. Hehre, R. W. Taft, and R. D. Topsom, Prog. Phys. Org. Chem., 12, 159 (1976).

^{(8) (}a) G. L. Nelson, G. C. Levy, and J. D. Cargioli, J. Am. Chem. Soc., 94, 3089 (1972). (b) The $\sigma^+ p$ values obtained by this correlation are based upon a derived synthetic set of $\sigma^+ p$ values of C. G. Swain and E. C. Lupton, J. Am. Chem. Soc., 90, 4328 (1968). R. T. C. Brownlee and R. D. Topsom, Tetrahedron Lett., 5187 (1972), have criticized this correlation of $\sigma^+ p$ with para ¹³C chemical shifts. Nevertheless, the BX₂ $\sigma^+ p$ values are provided here as the best estimate presently available for these substituent constants.

⁽⁹⁾ Substituent σ_R^0 values derived from infrared intensity measurements have been reported for BCl₂ (0.30) and B(OH)₂ (0.23) by A. Katritzky and R. D. Topsom, *Chem. Rev.*, **77**, 654 (1977).

<sup>Intents have been reported for BC12 (0.30) and B(OH)2 (0.33) by A. Katritzky and R. D. Topsom, Chem. Rev., 77, 654 (1977).
(10) The theory behind and extent to which correlations exist between charge density at carbon and ¹H, ¹⁹F, and ¹³C NMR chemical shifts have been the subject of recent reviews; see ref 6; also, D. G. Farnum, Adv. Phys. Org. Chem., 11, 22 (1975); G. Nelson and E. Wilson, Prog. Phys. Org. Chem., 12, 229 (1976). For a discussion of the correlation of NMR chemical shifts in monosubstituted benzenes with "ab initio" calculated charge densities see ref 7; correlation of ¹³C NMR shifts in substituted benzenes with CNDO/2 calculated charge densities is discussed in ref 8.</sup>

result that the first and second π ionization energies of $PhBF_2$ are greater than those of $PhBCl_2$. There is, therefore, a reversal of the substituent effect order based on NMR chemical shifts. The postulate of a dominant BF_2 field effect also offers a rationale for the observation that although according to the CNDO/2 calculation the BF_2 group withdraws less π -electron density from the benzene ring than even BR₂, the ¹³C NMR derived σ^0_R and σ^+_p values of BF₂ are more positive than those of BR₂.

Still greater $p-\pi$ back-bonding to boron by oxygen in $PhB(OH)_2$ and $PhB(OCH_3)_2$ reduces π -electron withdrawal from benzene by BX_2 to the point that the electron-donating inductive effect in the sigma framework finds expression in the negative σ_I values, Table II. The small calculated π -electron withdrawal of 0.05 electron from the ring by $B(OH)_2$ is however sufficient to account for the observed para ¹³C NMR chemical shifts when a shift factor of the order of 2×10^2 ppm/electron⁷ is assumed.

It is interesting to compare the ¹³C NMR chemical shifts of the monoarylboranes PhBX₂ with recently reported¹¹ NMR data for triphenylborane (Table I) and with trimesitylborane ¹³C NMR shifts relative to mesitylene, which we have also measured.

The small δ ¹³C para and negative δ ¹³C meta NMR shifts relative to benzene reported¹⁰ for Ph₃B seem in keeping with the known twisted propeller conformation of the triarylboranes which reduces $2p-\pi$ interactions between boron and the benzene ring. Comparable ¹³C chemical shifts were measured for trimesitylboron relative to mesitylene (δ para 2.5 δ meta 1.7). The ortho carbons of Ph₃B, however, show an exceptionally large downfield shift of almost 10 ppm, which is even more surprising in view of the small ortho ¹³C shift of trimesitylborane, relative to mesitylene, δ $^{13}\mathrm{C}$ or the 2.9, when compared to the other ortho ¹³C NMR shifts of the PhBX₂ series. (The ortho and para methyl carbons of trimesitylborane exhibit downfield shifts of 2.0 and 0.1 ppm, respectively, relative to mesitylene.) It would appear that ortho carbon ¹³C chemical shifts of triarylboranes may be sensitive functions of the aryl group twist angle relative to the plane of the boroncarbon bonds. This propeller twist angle is greater in trimesitylborane, because of the steric bulk of the ortho methyl groups, than in triphenylborane.¹² At small twist angles, ortho positions of triarylboranes will be deshielded by adjacent aromatic rings,¹² as well as by the deshielding anisotropy which seems to be associated with B-sp² bonds in the PhBX₂ sereis. At twist angles approaching 45° , the ortho ring positions may move into shielding regions of both B-sp² bonds, analogous to those of C=O or NO₂, and of the adjacent aromatic rings.¹³

If magnetic anisotropy, associated with adjacent rings and the central boron atom, does play a significant role in the ¹³C NMR shifts of triarylboranes, the role of similar effects will have to be reevaluated in the spectra of the isoelectronic and isosteric triarylcarboniums, where they have been neglected^{6,13} in favor of charge density effects. There is, in general, a parallel between NMR shifts observed for carbonium ions and corresponding boranes, for example, $PhCF_{2}^{+}$, ^{13,14} $PhCMe_{2}^{+}$, ^{15,16} and $PhC(OMe)_{2}^{+}$. ^{16,17}

a recent review of this problem.
(14) G. A. Olah and Y. K. Mo, Carbonium Ions, 5, 2135 (1976).
(15) G. Olah, R. D. Perter, C. L. Juell, and A. M. White, J. Am. Chem.

Following submission of this manuscript, an extensive study appeared¹⁷ of the ¹³C spectra of phenylboranes and boron-substituted aromatic heterocycles. Between this most recent paper and our own there is no disagreement as to experimental details; in the interpretation of the results we differ most in drawing attention to the strong inductive-field effects of BCl₂, BF₂, and B(OR)₂ groups.

Experimental Section

Details of the synthesis of PhBX₂ (X is F, OCH₃) and of the modified CNDO/2 calculations (X is Cl, F, OH, and CH_3) are provided in ref 2.

All NMR spectra were run in either the CW (for ¹H NMR) or FT (13 C NMR) mode on a Varian XL-100 spectrometer with internal D lock; 1 H (100 MHz), 13 C (25.2 MHz).

Both ¹H and ¹³C NMR spectra of PhBX₂ (X is F, Cl, OCH₃, and 9-BBN) were run on 15% v/v solutions in DCCl₃ with internal cyclohexane as a reference. Conversions to chemical shifts relative to benzene were made with the following shift conversions: δ^{CH}_{PhH} ¹H 5.94 ppm; δ^{CH}_{PhH} ¹³C 101.16 ppm; in DCCl₃, ref 8a.

Spectra of $PhB(OH)_2$ were run in CD_3OD (saturated solution) referenced to internal tetramethylsilane and converted to benzene reference by $\delta^{Me_4Si}_{PhH}$ ¹H 7.37 ppm; $\delta^{Me_4Si}_{PhH}$ ¹³C 128.50 ppm, ref 8a

Spectra of trimesitylborane were run in C₆D₆ referenced to internal tetramethylsilane. Chemical shifts of mesitylene, δ^{13} C, were taken from ref 6, corrected to $\delta^{Me_4Si}_{PhH}$ ¹³C 128.6 ppm. Chemical shifts, δ^{13} C, relative to tetramethylsilane, of trimesitylborane were 21.23 (p-CH₃), 23.07 (o-CH₃), 129.02 (m-C), 140.25 (p-C), and 140.57 (o-C) ppm.

Acknowledgment. We acknowledge the support of a Lubrizol Corporation Grant of the Research Corporation.

Registry No. PhBCl₂, 873-51-8; PhBF₂, 368-98-9; PhBR₂, 72826-88-1; PhB(OH)₂, 98-80-6; PhB(OMe)₂, 13471-35-7.

(16) G. Fraenkel and D. Farnum, Carbonium Ions, 1, 237 (1968). (17) J. D. Odom, T. F. Moore, R. Goetze, H. Nöth, and B. Wrack-meyer, J. Organomet. Chem., 173, 15 (1979).

Isolation and Structure of Bohemamine, $(1a\beta, 2\alpha, 6a\beta, 6b\beta)$ -3-Methyl-N-(1a, 6, 6a, 6b-tetrahydro-2,6a-dimethyl-6-oxo-2H-oxireno[a]pyrrolizin-4-yl)-2-butenamide

Terrence W. Doyle,* Donald E. Nettleton, David M. Balitz, John E. Moseley, and Robert E. Grulich

Research Division, Bristol Laboratories, Division of Bristol-Myers Company, Syracuse, New York 13201

Terry McCabe and Jon Clardy*

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853

Received October 16, 1979

While screening cultures of actinomycetes for novel antitumor substances we have isolated an anthracycline mixture, bohemic acid complex, from Actinosporangium sp. strain C36145 (ATCC 31127).¹ In addition to the known antibiotics cinerubins A and B² and pyrromycin,³

⁽¹¹⁾ W. J. Freeman, S. B. Miller, and T. B. Brill, J. Magn. Reson., 20, 378 (1975).

⁽¹²⁾ The out-of-plane twist of triphenylborane has been reported as 30° by F. Zettler, H. D. Hansen, and H. Hess, J. Organomet. Chem., 72, 157-162 (1974); that of trimesityl as 50° by J. F. Blount, P. Finocchiaro,

D. Gust, and K. Mislow, J. Am. Chem. Soc., 95, 7019 (1973).
 (13) D. G. Farnum, Adv. Phys. Org. Chem., 11, 123 (1975), provides

Soc., 94, 2044 (1972).

⁽¹⁾ It is the practice of this laboratory (B.L.) to give trivial names to antibiotic complexes based on operas. This complex is named for La Bohème and compounds subsequently isolated from the complex are given trivial names based on characters in the opera. (2) W. Keller-Schierlein and W. Richle, Antimicrob. Agents Che-

mother., 1970, 68 (1971).